Tag Archives: ecological engineering

ecosystem restoration and carbon sequestration

Ecosystem and soil restoration could offset around a fifth of U.S. carbon emissions, according to this article in Science Advances.

Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)—21 conservation, restoration, and improved land management interventions on natural and agricultural lands—to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year−1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year−1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.

March 2018 in Review

Most frightening stories:

Most hopeful stories:

  • One large sprawling city could be roughly the economic equivalent of several small high-density cities. This could potentially be good news for the planet if you choose in favor of the latter, and preserve the spaces in between as some combination of natural land and farm land.
  • The problems with free parking, and solutions to the problems, are well known. This could potentially be good news if anything were to be actually done about it. Self-parking cars could be really fantastic for cities.
  • The coal industry continues to collapse, and even the other fossil fuels are saying they are a bunch of whining losers. And yes, I consider this positive. I hope there aren’t too many old ladies whose pensions depend on coal at this point.

Most interesting stories, that were not particularly frightening or hopeful, or perhaps were a mixture of both:

February 2018 in Review

Most frightening stories:

  • A general rule across many types of wildlife is that their range after urbanization decreases to between one-half and one-third of what it was before urbanization.
  • The Cuban sonic attacks are real. At least, the people who experienced them have real brain damage, even if we still don’t know what technology did the damage.
  • Cape Town will probably not be the last major city to run out of water.

Most hopeful stories:

Most interesting stories, that were not particularly frightening or hopeful, or perhaps were a mixture of both:

agent-based wildlife modeling in cities

This is an agent-based model of wild boars coming from wild lands into a city. We don’t have wild boar issues where I live, but raccoons and deer occasionally show up. I’ve lived places where black bears show up unexpectedly in urban areas, and that can cause a stir.

Pigs in space: An agent-based model of wild boar (Sus scrofa) movement into cities

Last decades saw a dramatic increase in wildlife populations within urban areas. Policymakers seek to minimize human-wildlife conflicts resulting from overabundance of species, such as wild boars (Sus scrofa). To this end, there is a need to understand the drivers governing infiltration of wildlife into cities. In this paper we study the availability and distribution of food resources in urban areas as driver of wild boar movement patterns. Based on the optimal foraging theory, we utilize an agent-based simulation model to investigate the ever-growing infiltration of wild boars into some cities. We apply the model to an artificial city that mimics the landscape of the city of Haifa. Manipulating food availability and relative resistance costs of different land-covers we demonstrate that infiltration of boars depends on population size of wild boars and on the amount and spatial distribution of attractors (e.g., food). Model outputs for likely sets of parameters demonstrate good correspondence to the reports of boar observations within the city of Haifa, Israel, where the porosity of the urban fabric and the connectivity of open space patches provide a trail network that makes food throughout the city accessible at a relatively low search-cost. Our results indicate that land cover and food patterns determine critically boars’ foraging movement and infiltration into the city. The proposed modeling framework provides a tool to investigate wildlife management policies that aim at reducing people-wildlife conflicts in cities.

mapping urban vegetation on a fine scale

This is an interesting paper about mapping urban vegetation on a fine scale based on photos.

Mapping vegetation functional types in urban areas with WorldView-2 imagery: Integrating object-based classification with phenology

Mapping urban vegetation is a prerequisite to accurately understanding landscape patterns and ecological services provided by urban vegetation. However, the uncertainties in fine-scale vegetation biodiversity mapping still exist in capturing vegetation functional types efficiently at fine scale. To facilitate the application of fine-scale vegetation spatial configuration used for urban landscape planning and ecosystem service valuation, we present an approach integrating object-based classification with vegetation phenology for fine-scale vegetation functional type mapping in compact city of Beijing, China. The phenological information derived from two WorldView-2 imagery scenes, acquired on 14 September 2012 and 26 November 2012, was used to aid in the classification of tree functional types and grass. Then we further compared the approach to that of using only one WorldView imagery. We found WorldView-2 imagery can be successfully applied to map functional types of urban vegetation with its high spatial resolution and relatively high spectral resolution. The application of the vegetation phenology into classification greatly improved the overall accuracy of classification from 82.3% to 91.1%. In particular, the accuracies of vegetation types was improved by from 10% to 13.26%. The approach integrating vegetation phenology with high-resolution remote sensed images provides an efficient tool to incorporate multi-temporal data into fine-scale urban classification.

evidence-based restoration

If ecosystem restoration hasn’t been based on evidence in the past, what has it been based on?

Evidence-based restoration in the Anthropocene—from acting with purpose to acting for impact

The recognition that we are in the distinct new epoch of the Anthropocene suggests the necessity for ecological restoration to play a substantial role in repairing the Earth’s damaged ecosystems. Moreover, the precious yet limited resources devoted to restoration need to be used wisely. To do so, we call for the ecological restoration community to embrace the concept of evidence-based restoration. Evidence-based restoration involves the use of rigorous, repeatable, and transparent methods (i.e. systematic reviews) to identify and amass relevant knowledge sources, critically evaluate the science, and synthesize the credible science to yield robust policy and/or management advice needed to restore the Earth’s ecosystems. There are now several examples of restoration-relevant systematic reviews that have identified instances where restoration is entirely ineffective. Systematic reviews also serve as a tool to identify the knowledge gaps and the type of science needed (e.g. repeatable, appropriate replication, use of controls) to improve the evidence base. The restoration community, including both scientists and practitioners, needs to make evidence-based restoration a reality so that we can move from best intentions and acting with so-called “purpose” to acting for meaningful impact. Doing so has the potential to serve as a rallying point for reframing the Anthropocene as a so-called “good” epoch.

January 2018 in Review

Most frightening stories:

  • Larry Summers says we have a better than even chance of recession in the next three years. Sounds bad, but I wonder what that stat would look like for any randomly chosen three year period in modern history.
  • The United States is involved in at least seven wars: Afghanistan, Iraq, Syria, Yemen, Libya, Somalia, and Pakistan. Nuclear deterrence may not actually the work.
  • Cape Town, South Africa is in imminent danger of running out of water. Longer term, there are serious concerns about snowpack-dependent water supplies serving large urban populations in Asia and western North America.

Most hopeful stories:

Most interesting stories, that were not particularly frightening or hopeful, or perhaps were a mixture of both:

quantifying ecological functions

Here is an interesting article on quantifying ecological functions. The main application appears to be wetland mitigation but the theory seems more general and could maybe be adapted to a variety of ecosystem restorations or creations.

Landscape consequences of aggregation rules for functional equivalence in compensatory mitigation programs

Mitigation and offset programs designed to compensate for ecosystem function losses due to development must balance losses from affected ecosystems and gains in restored ecosystems. Aggregation rules applied to ecosystem functions to assess site equivalence are based on implicit assumptions about the substitutability of functions among sites and can profoundly influence the distribution of restored ecosystem functions on the landscape. We investigated the consequences of rules applied to aggregation of ecosystem functions for wetland offsets in the Beaverhill watershed in Alberta, Canada. We considered the fate of 3 ecosystem functions: hydrology, water purification, and biodiversity. We set up an affect-and-offset algorithm to simulate the effect of aggregation rules on ecosystem function for wetland offsets. Cobenefits and trade-offs among functions and the constraints posed by the quantity and quality of restorable sites resulted in a redistribution of functions between affected and offset wetlands. Hydrology and water-purification functions were positively correlated and negatively correlated with biodiversity function. Weighted-average rules did not replace functions in proportion to their weights. Rules prioritizing biodiversity function led to more monofunctional wetlands and landscapes. The minimum rule, for which the wetland score was equal to the worst performing function, promoted multifunctional wetlands and landscapes. The maximum rule, for which the wetland score was equal to the best performing function, promoted monofunctional wetlands and multifunctional landscapes. Because of implicit trade-offs among ecosystem functions, no-net-loss objectives for multiple functions should be constructed within a landscape context. Based on our results, we suggest criteria for the design of aggregation rules for no net loss of ecosystem functions within a landscape context include the concepts of substitutability, cobenefits and trade-offs, landscape constraints, heterogeneity, and the precautionary principle.

wildlife range in urban areas

Here’s an interesting study finding a general rule across many types of wildlife that their range after urbanization decreases to between one-half and one-third of what it was before urbanization.

Moving in the Anthropocene: Global reductions in terrestrial mammalian movements

Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.

One type of animal included in the study was deer in Pennsylvania. I also learned the name of the academic discipline that studies animal ranges and movements: movement ecology.